

    

        YaBTT

        v0.1.5



    



  

    Table of contents

    
      



            	Yet another BitTorrent Tracker


            	Set up HTTPS


            	Compilation Guide


            	Examples and Screenshots


            	Benchmark Report





          	Others
            


            	LICENSE



            

          




  	Modules
    

    	YaBTT


    	YaBTT.Deco


    	YaBTT.Deconstruct


    	YaBTT.Repo


    	YaBTTWeb.Auth


    	YaBTT.Query.Peers


    	YaBTT.Query.State


    	YaBTT.Schema.Connection


    	YaBTT.Schema.Peer


    	YaBTT.Schema.Torrent


    	YaBTT.CustomTypes.IPAddress


    	YaBTTWeb.Controllers.Announce


    	YaBTTWeb.Controllers.Info


    	YaBTTWeb.Controllers.Scrape


    	YaBTTWeb.Router


    

  



      

    


  

    
Yet another BitTorrent Tracker
    

[image: Build]

  
    
    Set up HTTPS - YaBTT v0.1.5
    
    

    



  
  

    
Set up HTTPS
    

In order to enable HTTPS, we need three additional files:
	cert.pem - A CA-signed certificate from a trusted Certificate Authority
	privkey.pem - A private key associated with a valid certificate
	chain.pem - An additional certificate that make up the 'CA chain'

If you already have the above files, you can start here. If you don't, here you can learn how to get them (signed by Let's Encrypt) automatically and FREE by Cerbot or acme.sh.
Manually manage certificate files
We just need to make sure that the certificate files are located under the /etc/yabtt/ssl/ path in the container. We can easily do it by Docker's 'Bind mounts' function.
We need to store the certificate files in the same local directory (please make sure that the file name is correct) and bind the path into the container.
docker run -d \
  --name yabtt \
  -v /path/for/certs/:/etc/yabtt/ssl/ \
  -p 8080:8080 \
  ghcr.io/kubaryi/yabtt:latest

Or run with Docker Compose:
---
version: 2.1

services:
  yabtt:
    image: ghcr.io/kubaryi/yabtt:latest
    volumes:
      - /path/for/certs/:/etc/yabtt/ssl/
    container_name: yabtt
    ports:
      - 8080:8080
Obtain certificate files by Cerbot
If you don't have an available certificate yet, you can obtain one for free by Cerbot, the official ACME software provided by Let's Encrypt.
This certificate will be valid for 90 days. After expiration, Cerbot will automatically renew it for 90 days (as long as Cerbot does not shut down, it will be permanently valid).
As we recommend, it would be a good idea to deploy Cerbot as a container. To this end, Let's Encrypt provides an official Docker container. At the same time, Let's Encrypt has cooperation with many cloud service providers. If your network infrastructure provider is on this list, you can choose a container optimized specifically for your provider. For example, to use Certbot for Amazon Route 53, you'd use certbot/dns-route53.
---
version: 2.1

services:
  certbot:
    image: certbot/dns-route53
    command: certonly --dns-route53 -d example.com --agree-tos
    environment:
      - AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
      - AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
    volumes:
      - certificates:/etc/letsencrypt/live/example.com/
    container_name: certbot

  yabtt:
    image: ghcr.io/kubaryi/yabtt:latest
    volumes:
      - certificates:/etc/yabtt/ssl/
    container_name: yabtt
    depends_on:
      - certbot
    ports:
      - 8080:8080

volumes:
  certificates:
Read more documents about certbot/certbot.
Read more documents about certbot/dns-route53.
Obtain certificate files by acme.sh
If you don't like Cerbot, you can also use acme.sh to obtain certificate files.
Similar to Cerbot, acme.sh also supports deploying it as a container, the same automatic renew when the certificate expires. It also supports Amazon Route 53.
---
version: 2.1

services:
  acme.sh:
    image: neilpang/acme.sh
    command: --issue --dns dns_aws -d example.com
    environment:
      - AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
      - AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
    volumes:
      - certificates:/acme.sh
    container_name: acme.sh

  yabtt:
    image: ghcr.io/kubaryi/yabtt:latest
    volumes:
      - certificates:/etc/yabtt/ssl/
    container_name: yabtt
    depends_on:
      - acme.sh
    ports:
      - 8080:8080

volumes:
  certificates:
The official documents for acme.sh/
Learn more about run acme.sh in container.
Learn more about use Amazon Route53 domain API.
R.I.P. Mr. Peter
<img src="https://user-images.githubusercontent.com/26341224/212175638-94333d89-f5fc-4975-b498-a111e81347ca.jpg"
 title="Peter Eckersley in San Francisco (March 2022)"
 alt="Peter Eckersley"
 width="400px"
 />
He is Peter Eckersley.
He and his friends founded Let's Encrypt.
His work allows every website to obtain HTTPS certificates for free.
Unfortunately, he died on September 2, 20221.
Let's say: Thank you, Peter! :hearts:

	&#x21A9;Peter Eckersley, may his memory be a blessing






  

  
    
    Compilation Guide - YaBTT v0.1.5
    
    

    



  
  

    
Compilation Guide
    

If you want to compile the application yourself, you can follow this guide.
Download the source code
First of all, you need to download the source code by Git:
git clone https://github.com/kubaryi/yabtt.git

Then enter the working directory ./yabtt.
By Docker Container
This is the easiest way to compile software.
You just need the following commands (Don't forget the .):
docker build --build-arg MIX_ENV=prod -t yabtt:latest .

Then the Docker will take care of everything for us.
Build containers based on alpine
Since 0.1.1-r1, we have used debian:stable-slim as the basic container by default for better compatibility reasons. But it has to be admitted that the containers based on alpine will have an unparalleled <sub>size</sub> advantage.
REPOSITORY             TAG               IMAGE ID       CREATED              SIZE
yabtt                  debian-slim       578a12c2757e   ...                  148MB
yabtt                  alpine            749a8378d467   ...                  26.1MB
If you need this nearly 100MB space for hard disk, you can refer to the following file to customize ./Dockerfile:
ARG ALPINE_VERSION=3.16
ARG ELIXIR_VERSION=1.14

# ==== Builder ====
FROM elixir:${ELIXIR_VERSION}-alpine AS builder

# The environment to build with
ARG MIX_ENV=prod
ENV MIX_ENV=${MIX_ENV}

WORKDIR /app

# Setup hex and rebar
RUN mix local.hex --force && \
    mix local.rebar --force

# Install dependencies for build sqlite3
RUN apk add --no-cache build-base

COPY . .

# Install & compile the dependencies of Elixir
RUN mix deps.get --only ${MIX_ENV} && \
    mix deps.compile --force

# Create and migrate the database
RUN mix do ecto.create, ecto.migrate
# Compile the application
RUN mix do compile, release


# ==== Runtime ====
FROM alpine:${ALPINE_VERSION} AS app

# Set the locale to UTF-8
ENV LANG=C.UTF-8

WORKDIR /app

# Install dependencies for BEAM
RUN apk add --no-cache openssl libstdc++ ncurses-libs

# Copy the release from the builder
COPY --from=builder /app/_build/prod/rel/yabtt .
COPY --from=builder /var/lib/sqlite3 /var/lib/sqlite3

EXPOSE 8080 8080/udp

# Run the application
ENTRYPOINT ["/app/bin/yabtt"]
CMD ["start"]
By Elixir
If you don't like Docker, you can also compile it manually after installing Elixir.
First of all, we need to install Hex, which is Elixir's official package repository (similar to NPM for Node.js).
mix local.hex

Then, install all dependencies required for compilation.
Note In order to compile sqlite3.c, the make and the C Environment are required.

MIX_ENV=prod mix do deps.get, deps.compile

Then create and initialize the database.
Note
The default location of the database file is: /var/lib/sqlite3/yabtt.db
You can configure it in the ./config/config.exs:
if config_env() == :prod do
  config :yabtt, YaBTT.Repo, database: "/the/path/you/want.db"
end

MIX_ENV=prod mix do ecto.create, ecto.migrate

Finally, compile and package the software.
MIX_ENV=prod mix do compile, release

The compiled files are located in the folder _build/prod/rel/yabtt/.



  

  
    
    Examples and Screenshots - YaBTT v0.1.5
    
    

    



  
  

    
Examples and Screenshots
    

Here we provide some examples of using this application.
Call /announce with normal mode
Notice that the info_hash need to be encoded to RFC1738. click here to learn more.
curl 'http://localhost:8080/announce?info_hash=%124Vx%9A%BC%DE%F1%23Eg%89%AB%CD%EF%124Vx%9A&peer_id=00000000000000000001&downloaded=100&uploaded=100&left=0&port=2001&event=completed'

We will get response like this:
d8:intervali3600e5:peersld2:ip7:1.2.3.37:peer id20:000000000000000000034:porti8000eed2:ip7:1.2.3.17:peer id20:000000000000000000014:porti8000eed2:ip7:1.2.3.47:peer id20:000000000000000000044:porti8000eed2:ip7:1.2.3.27:peer id20:000000000000000000024:porti8000eed2:ip7:1.2.3.57:peer id20:000000000000000000054:porti8000eeee
Decode to human readable results:
%{
  "interval" => 3600,
  "peers" => [
    %{"ip" => "1.2.3.3", "peer id" => "00000000000000000003", "port" => 8000},
    %{"ip" => "1.2.3.1", "peer id" => "00000000000000000001", "port" => 8000},
    %{"ip" => "1.2.3.4", "peer id" => "00000000000000000004", "port" => 8000},
    %{"ip" => "1.2.3.2", "peer id" => "00000000000000000002", "port" => 8000},
    %{"ip" => "1.2.3.5", "peer id" => "00000000000000000005", "port" => 8000}
  ]
}
Call /announce with compact=1
curl 'http://localhost:8080/announce?info_hash=%124Vx%9A%BC%DE%F1%23Eg%89%AB%CD%EF%124Vx%9A&peer_id=00000000000000000001&downloaded=100&uploaded=100&left=0&port=2001&event=completed&compact=1'

The response: (The binary data contained in the result can't be encoded as UTF-8. Let's replace it with {{peers}})
d8:intervali3600e5:peers30:{{peers}}e
Decode to human readable results:
%{
  "interval" => 3600,
  "peers" => <<1, 2, 3, 1, 31, 64, 1, 2, 3, 3, 31, 64, 1, 2, 3, 5, 31, 64, 1, 2, 3, 2, 31, 64, 1, 2, 3, 4, 31, 64>>
}
Call /announce with no_peer_id=1
curl 'http://localhost:8080/announce?info_hash=%124Vx%9A%BC%DE%F1%23Eg%89%AB%CD%EF%124Vx%9A&peer_id=00000000000000000001&downloaded=100&uploaded=100&left=0&port=2001&event=completed&no_peer_id=1'

We will get response like this:
d8:intervali3600e5:peersld2:ip7:1.2.3.14:porti8000eed2:ip7:1.2.3.44:porti8000eed2:ip7:1.2.3.34:porti8000eed2:ip7:1.2.3.24:porti8000eed2:ip7:1.2.3.54:porti8000eeee
Decode to human readable results:
%{
  "interval" => 3600,
  "peers" => [
    %{"ip" => "1.2.3.1", "port" => 8000},
    %{"ip" => "1.2.3.4", "port" => 8000},
    %{"ip" => "1.2.3.3", "port" => 8000},
    %{"ip" => "1.2.3.2", "port" => 8000},
    %{"ip" => "1.2.3.5", "port" => 8000}
  ]
}
Call /scrape with info_hash list
Notice that the info_hash need to be encoded to RFC1738.
curl 'http://localhost:8080/scrape?info_hash=Nf%22v%BA%CA%0F%DBk%D6%0Bv%17%8C%D1%19%D1%05%00%13&info_hash=%124Vx%9A%BC%DE%F1%23Eg%89%AB%CD%EF%124Vx%9A'

The response: (The binary data contained in the result can't be encoded as UTF-8. Let's replace it with {{info_hash}})
d5:filesd20:{{info_hash}}d8:completei0e10:downloadedi0e10:incompletei1ee20:{{info_hash}}d8:completei2e10:downloadedi3e10:incompletei1eeee
Decode to human readable results:
%{
  "files" => %{
    <<78, 102, 34, 118, 186, 202, 15, 219, 107, 214, 11, 118, 23, 140, 209, 25, 209, 5, 0, 19>>  => %{
      "complete" => 0,
      "downloaded" => 0,
      "incomplete" => 1
    },
    <<18, 52, 86, 120, 154, 188, 222, 241, 35, 69, 103, 137, 171, 205, 239, 18, 52, 86, 120, 154>> => %{
      "complete" => 2,
      "downloaded" => 3,
      "incomplete" => 1
    }
  }
}
Call /info or /stats
Visit https://localhost:8080/info in the browser.
[image: Tracker statistics]



  

  
    
    Benchmark Report - YaBTT v0.1.5
    
    

    



  
  

    
Benchmark :100:
    

We used Benchee as a framework to write a simple, (possibly) unscientific Benchmark.
Defense
We pair 100 users, 1,000 users and 10,000 users with 100 BitTorrents, 1,000 BitTorrents and 10,000 BitTorrents one by one to form a 3 &#215; 3 matrix, and obtained a total of 9 groups of cases. Then use functions to randomly generate Request based on cases in each run to imitate the performance of users of different sizes in accessing the server in different numbers of BitTorrents lists.
     BitTorrent   BitTorrent    BitTorrent
User (100, 100)   (1000, 100)   (10000, 100)       Randomly generate `Request`
User (100, 1000)  (1000, 1000)  (10000, 1000)   -------------------------------->   &Benchee.run/2
User (100, 10000) (1000, 10000) (10000, 10000)
Report
  System info
    
      	Elixir Version: 1.14.2

      	Erlang Version: 25.2

      	Operating system: Linux

      	Available memory: 6.78 GB

      	CPU Information: Intel(R) Xeon(R) Platinum 8272CL CPU @ 2.60GHz

      	Number of Available Cores: 2

    
  Environment variables
    
      	YABTT_QUERY_LIMIT: 30

    
  Benchmark configuration
    
      	warmup: 2 s

      	time: 5 s

      	memory time: 0 ns

      	reduction time: 0 ns

      	reduction time: 0 ns

      	parallel: 1

    
Large number of BitTorrents
	Name	Iterations per Second	Average	Deviation	Median	Mode	Minimum	Maximum	Sample size
	large number of users	1.53 K	652.99 μs	&#177;33.85%	628.70 μs	645.40 μs, 635.70 μs	419.50 μs	5584.01 μs	7617
	moderate number of users	1.50 K	664.84 μs	&#177;37.05%	629.50 μs	535.00 μs	409.90 μs	7383.41 μs	7480
	small number of users	1.01 K	991.33 μs	&#177;29.80%	940.79 μs	824.90 μs, 897.60 μs	671.00 μs	10153.44 μs	5025

  [image: ips-1]
  [image: run-time-1]
Medium number of BitTorrents
	Name	Iterations per Second	Average	Deviation	Median	Mode	Minimum	Maximum	Sample size
	large number of users	1.88 K	531.61 μs	&#177;37.47%	485.50 μs	493.90 μs	346.30 μs	5613.71 μs	9349
	moderate number of users	1.87 K	533.89 μs	&#177;47.34%	488.80 μs	443 μs, 491.70 μs, 417.20 μs, 440.20 μs	345.90 μs	8931.21 μs	9307
	small number of users	1.32 K	755.99 μs	&#177;61.85%	706.20 μs	634.60 μs, 702.00 μs, 832.80 μs, 691.80 μs	518.50 μs	33562.44 μs	6582

  [image: ips-2]
  [image: run-time-2]
Small amount of BitTorrent
	Name	Iterations per Second	Average	Deviation	Median	Mode	Minimum	Maximum	Sample size
	large number of users	1.91 K	524.12 μs	&#177;42.72%	480.50 μs	445.70 μs, 502.80 μs, 491.60 μs, 489.80 μs, 449.40 μs, 368.30 μs, 498.50 μs, 447 μs, 503.10 μs, 438.20 μs, 498.70 μs	339.50 μs	6138.81 μs	9480
	moderate number of users	1.83 K	547.28 μs	&#177;52.97%	480.50 μs	483.80 μs	345.40 μs	6824.51 μs	9082
	small number of users	1.34 K	744.98 μs	&#177;31.50%	707.30 μs	639.90 μs	517 μs	6809.51 μs	6680

  [image: ips-3]
  [image: run-time-3]
Note This report applies to application version 0.0.4.




  

  
    
    LICENSE - YaBTT v0.1.5
    
    

    



  
  

    
LICENSE
    


                    GNU GENERAL PUBLIC LICENSE
                       Version 3, 29 June 2007

 Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

                            Preamble

  The GNU General Public License is a free, copyleft license for
software and other kinds of works.

  The licenses for most software and other practical works are designed
to take away your freedom to share and change the works.  By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users.  We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors.  You can apply it to
your programs, too.

  When we speak of free software, we are referring to freedom, not
price.  Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

  To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights.  Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

  For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received.  You must make sure that they, too, receive
or can get the source code.  And you must show them these terms so they
know their rights.

  Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

  For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software.  For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

  Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so.  This is fundamentally incompatible with the aim of
protecting users' freedom to change the software.  The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable.  Therefore, we
have designed this version of the GPL to prohibit the practice for those
products.  If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

  Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary.  To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

  The precise terms and conditions for copying, distribution and
modification follow.

                       TERMS AND CONDITIONS

  0. Definitions.

  "This License" refers to version 3 of the GNU General Public License.

  "Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

  "The Program" refers to any copyrightable work licensed under this
License.  Each licensee is addressed as "you".  "Licensees" and
"recipients" may be individuals or organizations.

  To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy.  The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

  A "covered work" means either the unmodified Program or a work based
on the Program.

  To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy.  Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

  To "convey" a work means any kind of propagation that enables other
parties to make or receive copies.  Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

  An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License.  If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

  1. Source Code.

  The "source code" for a work means the preferred form of the work
for making modifications to it.  "Object code" means any non-source
form of a work.

  A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

  The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form.  A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

  The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities.  However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work.  For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

  The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

  The Corresponding Source for a work in source code form is that
same work.

  2. Basic Permissions.

  All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met.  This License explicitly affirms your unlimited
permission to run the unmodified Program.  The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work.  This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

  You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force.  You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright.  Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

  Conveying under any other circumstances is permitted solely under
the conditions stated below.  Sublicensing is not allowed; section 10
makes it unnecessary.

  3. Protecting Users' Legal Rights From Anti-Circumvention Law.

  No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

  When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

  4. Conveying Verbatim Copies.

  You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

  You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

  5. Conveying Modified Source Versions.

  You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

    a) The work must carry prominent notices stating that you modified
    it, and giving a relevant date.

    b) The work must carry prominent notices stating that it is
    released under this License and any conditions added under section
    7.  This requirement modifies the requirement in section 4 to
    "keep intact all notices".

    c) You must license the entire work, as a whole, under this
    License to anyone who comes into possession of a copy.  This
    License will therefore apply, along with any applicable section 7
    additional terms, to the whole of the work, and all its parts,
    regardless of how they are packaged.  This License gives no
    permission to license the work in any other way, but it does not
    invalidate such permission if you have separately received it.

    d) If the work has interactive user interfaces, each must display
    Appropriate Legal Notices; however, if the Program has interactive
    interfaces that do not display Appropriate Legal Notices, your
    work need not make them do so.

  A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit.  Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

  6. Conveying Non-Source Forms.

  You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

    a) Convey the object code in, or embodied in, a physical product
    (including a physical distribution medium), accompanied by the
    Corresponding Source fixed on a durable physical medium
    customarily used for software interchange.

    b) Convey the object code in, or embodied in, a physical product
    (including a physical distribution medium), accompanied by a
    written offer, valid for at least three years and valid for as
    long as you offer spare parts or customer support for that product
    model, to give anyone who possesses the object code either (1) a
    copy of the Corresponding Source for all the software in the
    product that is covered by this License, on a durable physical
    medium customarily used for software interchange, for a price no
    more than your reasonable cost of physically performing this
    conveying of source, or (2) access to copy the
    Corresponding Source from a network server at no charge.

    c) Convey individual copies of the object code with a copy of the
    written offer to provide the Corresponding Source.  This
    alternative is allowed only occasionally and noncommercially, and
    only if you received the object code with such an offer, in accord
    with subsection 6b.

    d) Convey the object code by offering access from a designated
    place (gratis or for a charge), and offer equivalent access to the
    Corresponding Source in the same way through the same place at no
    further charge.  You need not require recipients to copy the
    Corresponding Source along with the object code.  If the place to
    copy the object code is a network server, the Corresponding Source
    may be on a different server (operated by you or a third party)
    that supports equivalent copying facilities, provided you maintain
    clear directions next to the object code saying where to find the
    Corresponding Source.  Regardless of what server hosts the
    Corresponding Source, you remain obligated to ensure that it is
    available for as long as needed to satisfy these requirements.

    e) Convey the object code using peer-to-peer transmission, provided
    you inform other peers where the object code and Corresponding
    Source of the work are being offered to the general public at no
    charge under subsection 6d.

  A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

  A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling.  In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage.  For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product.  A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

  "Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source.  The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

  If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information.  But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

  The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed.  Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

  Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

  7. Additional Terms.

  "Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law.  If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

  When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it.  (Additional permissions may be written to require their own
removal in certain cases when you modify the work.)  You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

  Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

    a) Disclaiming warranty or limiting liability differently from the
    terms of sections 15 and 16 of this License; or

    b) Requiring preservation of specified reasonable legal notices or
    author attributions in that material or in the Appropriate Legal
    Notices displayed by works containing it; or

    c) Prohibiting misrepresentation of the origin of that material, or
    requiring that modified versions of such material be marked in
    reasonable ways as different from the original version; or

    d) Limiting the use for publicity purposes of names of licensors or
    authors of the material; or

    e) Declining to grant rights under trademark law for use of some
    trade names, trademarks, or service marks; or

    f) Requiring indemnification of licensors and authors of that
    material by anyone who conveys the material (or modified versions of
    it) with contractual assumptions of liability to the recipient, for
    any liability that these contractual assumptions directly impose on
    those licensors and authors.

  All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10.  If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term.  If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

  If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

  Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

  8. Termination.

  You may not propagate or modify a covered work except as expressly
provided under this License.  Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

  However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

  Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

  Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License.  If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

  9. Acceptance Not Required for Having Copies.

  You are not required to accept this License in order to receive or
run a copy of the Program.  Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance.  However,
nothing other than this License grants you permission to propagate or
modify any covered work.  These actions infringe copyright if you do
not accept this License.  Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

  10. Automatic Licensing of Downstream Recipients.

  Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License.  You are not responsible
for enforcing compliance by third parties with this License.

  An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations.  If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

  You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License.  For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

  11. Patents.

  A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based.  The
work thus licensed is called the contributor's "contributor version".

  A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version.  For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

  Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

  In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement).  To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

  If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients.  "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

  If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

  A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License.  You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

  Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

  12. No Surrender of Others' Freedom.

  If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License.  If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all.  For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

  13. Use with the GNU Affero General Public License.

  Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work.  The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

  14. Revised Versions of this License.

  The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time.  Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

  Each version is given a distinguishing version number.  If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation.  If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

  If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

  Later license versions may give you additional or different
permissions.  However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

  15. Disclaimer of Warranty.

  THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

  16. Limitation of Liability.

  IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

  17. Interpretation of Sections 15 and 16.

  If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

                     END OF TERMS AND CONDITIONS

            How to Apply These Terms to Your New Programs

  If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

  To do so, attach the following notices to the program.  It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

    <one line to give the program's name and a brief idea of what it does.>
    Copyright (C) <year>  <name of author>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

  If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

    <program>  Copyright (C) <year>  <name of author>
    This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
    This is free software, and you are welcome to redistribute it
    under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License.  Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".

  You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.

  The GNU General Public License does not permit incorporating your program
into proprietary programs.  If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library.  If this is what you want to do, use the GNU Lesser General
Public License instead of this License.  But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.




  

  
    
    YaBTT - YaBTT v0.1.5
    
    

    



  
  

    
YaBTT 
    



      
Yet another BitTorrent Tracker
This is the main entry point for the YaBTT as a library.
All the functions will be contained in this module.
Specifically, the insert_or_update/1 function is used to insert or update a
torrent and a peer, and thier status and relationship. The query/1 function
is used to query the peers who hold the target torrent.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Types
  


    
      
        errors()

      


    


    
      
        t()

      


    


    
      
        t(res)

      


    





  
    Functions
  


    
      
        insert_or_update(conn)

      


        A transaction that inserts or updates a torrent and a peer.



    


    
      
        query_peers(multi)

      


        A query function optimized specifically for insert_or_update/1.



    


    
      
        query_state(info_hashs)

      


        Re-export the YaBTT.Query.State.query/1 function.



    





      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    errors()


      
       
       View Source
     


  


  

      

          @type errors() ::
  {:error, Ecto.Multi.name(), Ecto.Changeset.t(), Ecto.Multi.t()}
  | {:error, Bento.Encoder.bencodable()}
  | {:error, Ecto.Changeset.t()}


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: t(map())


      



  



  
    
      
      Link to this type
    
    t(res)


      
       
       View Source
     


  


  

      

          @type t(res) :: {:ok, res} | errors()


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    insert_or_update(conn)


      
       
       View Source
     


  


  

      

          @spec insert_or_update(Plug.Conn.t()) :: t()


      


A transaction that inserts or updates a torrent and a peer.
The main process of the transaction:
	The transaction begins.
	Read and disinfect the HTTP parameters.
	Get the torrent from database, or create a new one if it doesn't exist.
	Get the peer from database, or create a new one if it doesn't exist.
	Create a connection between the torrent and the peer, and record
the status of the connection.
	Commit the transaction.


  
  parameters

  
  Parameters


	conn: the Plug.Conn struct


  
  examples

  
  Examples


iex> params = %{
...>   "info_hash" => "f0a15e27fafbffc1c2f18f69fcac2dfa461ff4e7",
...>   "peer_id" => "-TR14276775888084597",
...>   "key" => "ecsc1ggh0h",
...>   "port" => "6881",
...>   "uploaded" => "121",
...>   "downloaded" => "41421",
...>   "left" => "0",
...>   "event" => "started"
...> }
iex> conn = %Plug.Conn{params: params, remote_ip: {127, 0, 0, 1}}
iex> YaBTT.insert_or_update(conn)

  



  
    
      
      Link to this function
    
    query_peers(multi)


      
       
       View Source
     


  


  

      

          @spec query_peers(t()) :: t()


      


A query function optimized specifically for insert_or_update/1.
Its essence is still query_peers/2, but we extract the YaBTT.Query.Peers.id/0
and YaBTT.Query.Peers.opts/0 from the transaction result. At the same time,
we wrap the result in a {:ok, _} tuple, and propagating the error from
the transaction result.

  
  parameters

  
  Parameters


	transaction: the result of transactions


  
  examples

  
  Examples


iex> deco = %YaBTT.Deco{
...>   ids: %{info_hash: "f0a15e27fafbffc1c2f18f69fcac2dfa461ff4e7"},
...>   config: %{mode: :compact, query_limit: 50}
...> }
iex> YaBTT.query_peers({:ok, %{deco: deco}})

iex> YaBTT.query_peers({:error, :multi_name, %{}, %{}})

iex> YaBTT.query_peers({:error, %{}})

iex> YaBTT.query_peers(:internal_errors)

  



  
    
      
      Link to this function
    
    query_state(info_hashs)


      
       
       View Source
     


  


  

      

          @spec query_state(t() | [YaBTT.Query.State.info_hash()]) ::
  t() | YaBTT.Query.State.t()


      


Re-export the YaBTT.Query.State.query/1 function.

  
  examples

  
  Examples


iex> YaBTT.query_state(["info_hash_1", "info_hash_2"])

iex> YaBTT.query_state({:ok, %{info_hash: ["info_hash_1", "info_hash_2"]}})

iex> YaBTT.query_state({:error, %{}})

  


        

      



  

  
    
    YaBTT.Deco - YaBTT v0.1.5
    
    

    



  
  

    
YaBTT.Deco 
    



      
To store the deconstruct of the announce request parameters.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Types
  


    
      
        config()

      


    


    
      
        ids()

      


    


    
      
        t()

      


    





      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    config()


      
       
       View Source
     


  


  

      

          @type config() :: %{mode: :compact | :normal | nil, query_limit: integer()}


      



  



  
    
      
      Link to this type
    
    ids()


      
       
       View Source
     


  


  

      

          @type ids() :: %{info_hash: binary(), peer_id: binary(), key: binary() | nil}


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %YaBTT.Deco{config: config(), ids: ids(), params: map() | nil}


      



  


        

      



  

  
    
    YaBTT.Deconstruct - YaBTT v0.1.5
    
    

    



  
  

    
YaBTT.Deconstruct 
    



      
To deconstruct the announce request parameters.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Functions
  


    
      
        deco(kv)

      


        Deconstruct the announce request parameters.



    





      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    deco(kv)


      
       
       View Source
     


  


  

      

          @spec deco(term()) :: {:error, String.t()} | {:ok, YaBTT.Deco.t()}


      


Deconstruct the announce request parameters.
The params can be a map/0 or a Keyword.t/0. If it is a Keyword, it will be converted to
a map first. The params must contain the info_hash and peer_id keys. Otherwise, it will
return an error. The params will be stored in the YaBTT.Deco.t/0 struct.

  


        

      



  

  
    
    YaBTT.Repo - YaBTT v0.1.5
    
    

    



  
  

    
YaBTT.Repo 
    



      
The repository for the YaBTT application.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Functions
  


    
      
        aggregate(queryable, aggregate, opts \\ [])

      


        Callback implementation for Ecto.Repo.aggregate/3.



    


    
      
        aggregate(queryable, aggregate, field, opts)

      


        Callback implementation for Ecto.Repo.aggregate/4.



    


    
      
        all(queryable, opts \\ [])

      


        Callback implementation for Ecto.Repo.all/2.



    


    
      
        checked_out?()

      


        Callback implementation for Ecto.Repo.checked_out?/0.



    


    
      
        checkout(fun, opts \\ [])

      


        Callback implementation for Ecto.Repo.checkout/2.



    


    
      
        child_spec(opts)

      


    


    
      
        config()

      


        Callback implementation for Ecto.Repo.config/0.



    


    
      
        default_options(operation)

      


        Callback implementation for Ecto.Repo.default_options/1.



    


    
      
        delete(struct, opts \\ [])

      


        Callback implementation for Ecto.Repo.delete/2.



    


    
      
        delete!(struct, opts \\ [])

      


        Callback implementation for Ecto.Repo.delete!/2.



    


    
      
        delete_all(queryable, opts \\ [])

      


        Callback implementation for Ecto.Repo.delete_all/2.



    


    
      
        disconnect_all(interval, opts \\ [])

      


        A convenience function for SQL-based repositories that forces all connections in the
pool to disconnect within the given interval.



    


    
      
        exists?(queryable, opts \\ [])

      


        Callback implementation for Ecto.Repo.exists?/2.



    


    
      
        explain(operation, queryable, opts \\ [])

      


        A convenience function for SQL-based repositories that executes an EXPLAIN statement or similar
depending on the adapter to obtain statistics for the given query.



    


    
      
        get(queryable, id, opts \\ [])

      


        Callback implementation for Ecto.Repo.get/3.



    


    
      
        get!(queryable, id, opts \\ [])

      


        Callback implementation for Ecto.Repo.get!/3.



    


    
      
        get_by(queryable, clauses, opts \\ [])

      


        Callback implementation for Ecto.Repo.get_by/3.



    


    
      
        get_by!(queryable, clauses, opts \\ [])

      


        Callback implementation for Ecto.Repo.get_by!/3.



    


    
      
        get_dynamic_repo()

      


        Callback implementation for Ecto.Repo.get_dynamic_repo/0.



    


    
      
        in_transaction?()

      


        Callback implementation for Ecto.Repo.in_transaction?/0.



    


    
      
        insert(struct, opts \\ [])

      


        Callback implementation for Ecto.Repo.insert/2.



    


    
      
        insert!(struct, opts \\ [])

      


        Callback implementation for Ecto.Repo.insert!/2.



    


    
      
        insert_all(schema_or_source, entries, opts \\ [])

      


        Callback implementation for Ecto.Repo.insert_all/3.



    


    
      
        insert_or_update(changeset, opts \\ [])

      


        Callback implementation for Ecto.Repo.insert_or_update/2.



    


    
      
        insert_or_update!(changeset, opts \\ [])

      


        Callback implementation for Ecto.Repo.insert_or_update!/2.



    


    
      
        load(schema_or_types, data)

      


        Callback implementation for Ecto.Repo.load/2.



    


    
      
        one(queryable, opts \\ [])

      


        Callback implementation for Ecto.Repo.one/2.



    


    
      
        one!(queryable, opts \\ [])

      


        Callback implementation for Ecto.Repo.one!/2.



    


    
      
        preload(struct_or_structs_or_nil, preloads, opts \\ [])

      


        Callback implementation for Ecto.Repo.preload/3.



    


    
      
        prepare_query(operation, query, opts)

      


        Callback implementation for Ecto.Repo.prepare_query/3.



    


    
      
        put_dynamic_repo(dynamic)

      


        Callback implementation for Ecto.Repo.put_dynamic_repo/1.



    


    
      
        query(sql, params \\ [], opts \\ [])

      


        A convenience function for SQL-based repositories that executes the given query.



    


    
      
        query!(sql, params \\ [], opts \\ [])

      


        A convenience function for SQL-based repositories that executes the given query.



    


    
      
        query_many(sql, params \\ [], opts \\ [])

      


        A convenience function for SQL-based repositories that executes the given multi-result query.



    


    
      
        query_many!(sql, params \\ [], opts \\ [])

      


        A convenience function for SQL-based repositories that executes the given multi-result query.



    


    
      
        reload(queryable, opts \\ [])

      


        Callback implementation for Ecto.Repo.reload/2.



    


    
      
        reload!(queryable, opts \\ [])

      


        Callback implementation for Ecto.Repo.reload!/2.



    


    
      
        rollback(value)

      


        Callback implementation for Ecto.Repo.rollback/1.



    


    
      
        start_link(opts \\ [])

      


        Callback implementation for Ecto.Repo.start_link/1.



    


    
      
        stop(timeout \\ 5000)

      


        Callback implementation for Ecto.Repo.stop/1.



    


    
      
        stream(queryable, opts \\ [])

      


        Callback implementation for Ecto.Repo.stream/2.



    


    
      
        to_sql(operation, queryable)

      


        A convenience function for SQL-based repositories that translates the given query to SQL.



    


    
      
        transaction(fun_or_multi, opts \\ [])

      


        Callback implementation for Ecto.Repo.transaction/2.



    


    
      
        update(struct, opts \\ [])

      


        Callback implementation for Ecto.Repo.update/2.



    


    
      
        update!(struct, opts \\ [])

      


        Callback implementation for Ecto.Repo.update!/2.



    


    
      
        update_all(queryable, updates, opts \\ [])

      


        Callback implementation for Ecto.Repo.update_all/3.



    





      


      
        
          
            
            Anchor for this section
          
Functions
        

        


    

  
    
      
      Link to this function
    
    aggregate(queryable, aggregate, opts \\ [])


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.aggregate/3.

  



  
    
      
      Link to this function
    
    aggregate(queryable, aggregate, field, opts)


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.aggregate/4.

  



    

  
    
      
      Link to this function
    
    all(queryable, opts \\ [])


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.all/2.

  



  
    
      
      Link to this function
    
    checked_out?()


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.checked_out?/0.

  



    

  
    
      
      Link to this function
    
    checkout(fun, opts \\ [])


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.checkout/2.

  



  
    
      
      Link to this function
    
    child_spec(opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    config()


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.config/0.

  



  
    
      
      Link to this function
    
    default_options(operation)


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.default_options/1.

  



    

  
    
      
      Link to this function
    
    delete(struct, opts \\ [])


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.delete/2.

  



    

  
    
      
      Link to this function
    
    delete!(struct, opts \\ [])


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.delete!/2.

  



    

  
    
      
      Link to this function
    
    delete_all(queryable, opts \\ [])


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.delete_all/2.

  



    

  
    
      
      Link to this function
    
    disconnect_all(interval, opts \\ [])


      
       
       View Source
     


  


  

A convenience function for SQL-based repositories that forces all connections in the
pool to disconnect within the given interval.
See Ecto.Adapters.SQL.disconnect_all/3 for more information.

  



    

  
    
      
      Link to this function
    
    exists?(queryable, opts \\ [])


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.exists?/2.

  



    

  
    
      
      Link to this function
    
    explain(operation, queryable, opts \\ [])


      
       
       View Source
     


  


  

A convenience function for SQL-based repositories that executes an EXPLAIN statement or similar
depending on the adapter to obtain statistics for the given query.
See Ecto.Adapters.SQL.explain/4 for more information.

  



    

  
    
      
      Link to this function
    
    get(queryable, id, opts \\ [])


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.get/3.

  



    

  
    
      
      Link to this function
    
    get!(queryable, id, opts \\ [])


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.get!/3.

  



    

  
    
      
      Link to this function
    
    get_by(queryable, clauses, opts \\ [])


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.get_by/3.

  



    

  
    
      
      Link to this function
    
    get_by!(queryable, clauses, opts \\ [])


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.get_by!/3.

  



  
    
      
      Link to this function
    
    get_dynamic_repo()


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.get_dynamic_repo/0.

  



  
    
      
      Link to this function
    
    in_transaction?()


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.in_transaction?/0.

  



    

  
    
      
      Link to this function
    
    insert(struct, opts \\ [])


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.insert/2.

  



    

  
    
      
      Link to this function
    
    insert!(struct, opts \\ [])


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.insert!/2.

  



    

  
    
      
      Link to this function
    
    insert_all(schema_or_source, entries, opts \\ [])


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.insert_all/3.

  



    

  
    
      
      Link to this function
    
    insert_or_update(changeset, opts \\ [])


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.insert_or_update/2.

  



    

  
    
      
      Link to this function
    
    insert_or_update!(changeset, opts \\ [])


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.insert_or_update!/2.

  



  
    
      
      Link to this function
    
    load(schema_or_types, data)


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.load/2.

  



    

  
    
      
      Link to this function
    
    one(queryable, opts \\ [])


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.one/2.

  



    

  
    
      
      Link to this function
    
    one!(queryable, opts \\ [])


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.one!/2.

  



    

  
    
      
      Link to this function
    
    preload(struct_or_structs_or_nil, preloads, opts \\ [])


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.preload/3.

  



  
    
      
      Link to this function
    
    prepare_query(operation, query, opts)


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.prepare_query/3.

  



  
    
      
      Link to this function
    
    put_dynamic_repo(dynamic)


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.put_dynamic_repo/1.

  



    

    

  
    
      
      Link to this function
    
    query(sql, params \\ [], opts \\ [])


      
       
       View Source
     


  


  

A convenience function for SQL-based repositories that executes the given query.
See Ecto.Adapters.SQL.query/4 for more information.

  



    

    

  
    
      
      Link to this function
    
    query!(sql, params \\ [], opts \\ [])


      
       
       View Source
     


  


  

A convenience function for SQL-based repositories that executes the given query.
See Ecto.Adapters.SQL.query!/4 for more information.

  



    

    

  
    
      
      Link to this function
    
    query_many(sql, params \\ [], opts \\ [])


      
       
       View Source
     


  


  

A convenience function for SQL-based repositories that executes the given multi-result query.
See Ecto.Adapters.SQL.query_many/4 for more information.

  



    

    

  
    
      
      Link to this function
    
    query_many!(sql, params \\ [], opts \\ [])


      
       
       View Source
     


  


  

A convenience function for SQL-based repositories that executes the given multi-result query.
See Ecto.Adapters.SQL.query_many!/4 for more information.

  



    

  
    
      
      Link to this function
    
    reload(queryable, opts \\ [])


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.reload/2.

  



    

  
    
      
      Link to this function
    
    reload!(queryable, opts \\ [])


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.reload!/2.

  



  
    
      
      Link to this function
    
    rollback(value)


      
       
       View Source
     


  


  

      

          @spec rollback(term()) :: no_return()


      


Callback implementation for Ecto.Repo.rollback/1.

  



    

  
    
      
      Link to this function
    
    start_link(opts \\ [])


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.start_link/1.

  



    

  
    
      
      Link to this function
    
    stop(timeout \\ 5000)


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.stop/1.

  



    

  
    
      
      Link to this function
    
    stream(queryable, opts \\ [])


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.stream/2.

  



  
    
      
      Link to this function
    
    to_sql(operation, queryable)


      
       
       View Source
     


  


  

A convenience function for SQL-based repositories that translates the given query to SQL.
See Ecto.Adapters.SQL.to_sql/3 for more information.

  



    

  
    
      
      Link to this function
    
    transaction(fun_or_multi, opts \\ [])


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.transaction/2.

  



    

  
    
      
      Link to this function
    
    update(struct, opts \\ [])


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.update/2.

  



    

  
    
      
      Link to this function
    
    update!(struct, opts \\ [])


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.update!/2.

  



    

  
    
      
      Link to this function
    
    update_all(queryable, updates, opts \\ [])


      
       
       View Source
     


  


  

Callback implementation for Ecto.Repo.update_all/3.

  


        

      



  

  
    
    YaBTTWeb.Auth - YaBTT v0.1.5
    
    

    



  
  

    
YaBTTWeb.Auth 
    



      
Plug for basic authentification.
This Plug allows the client to authenticate with RFC7617.
Default authentication:
	username: "admin"
	password: "admin"

Example
You can import the module and use it by plug:
import YaBTTWeb.Auth

plug :auth, username: "admin", password: "admin"
Or, use it as a Plug:
plug YaBTTWeb.Auth, username: "admin", password: "admin"

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Functions
  


    
      
        auth(conn, opts)

      


        Authenticates the request when use this module as a module.



    


    
      
        auth_config(opts)

      


        Returns the authentication configuration.



    


    
      
        call(conn, opts \\ [])

      


        Authenticates the request when use this module as a Plug.



    


    
      
        init(opts)

      


        Initializes the plug with the given options.



    





      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    auth(conn, opts)


      
       
       View Source
     


  


  

      

          @spec auth(
  Plug.Conn.t(),
  keyword()
) :: Plug.Conn.t()


      


Authenticates the request when use this module as a module.

  
  example

  
  Example


import YaBTTWeb.Auth

plug :auth

  



  
    
      
      Link to this function
    
    auth_config(opts)


      
       
       View Source
     


  


  

      

          @spec auth_config(keyword()) :: keyword()


      


Returns the authentication configuration.
priority: plug args > environment > default

  



    

  
    
      
      Link to this function
    
    call(conn, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec call(Plug.Conn.t(), Plug.opts()) :: Plug.Conn.t()


      


Authenticates the request when use this module as a Plug.

  
  example

  
  Example


plug YaBTTWeb.Auth

  



  
    
      
      Link to this function
    
    init(opts)


      
       
       View Source
     


  


  

      

          @spec init(Plug.opts()) :: Plug.opts()


      


Initializes the plug with the given options.

  


        

      



  

  
    
    YaBTT.Query.Peers - YaBTT v0.1.5
    
    

    



  
  

    
YaBTT.Query.Peers 
    



      
This module is used to query the peers who hold the target torrent.
You can use the environment variable YABTT_QUERY_LIMIT to
limit the number of peers returned per query. The value default to 50, but we recommend
you to set it smaller, like 30. Because this value is important to performance.
Practice tells us that even 30 peers is plenty.
Implementer's Note
Even 30 peers is plenty, the official client version 3 in fact only actively
forms new connections if it has less than 30 peers and will refuse connections if it has 55.
This value is important to performance. When a new piece has completed download,
HAVE messages (see below) will need to be sent to most active peers.
As a result the cost of broadcast traffic grows in direct proportion to the number of peers. Above 25,
new peers are highly unlikely to increase download speed. UI designers are strongly
advised to make this obscure and hard to change as it is very rare to be useful to do so.
 See: Bittorrent Protocol Specification v1.0

As required by the specification, the queried peers will be random.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Types
  


    
      
        id()

      


    


    
      
        opts()

      


    





  
    Functions
  


    
      
        query(map)

      


        Query the peers who hold the target torrent by YaBTT.Deco.t/0.



    


    
      
        query(info_hash, opts)

      


        Query the peers who hold the target torrent.



    





      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    id()


      
       
       View Source
     


  


  

      

          @type id() :: integer() | binary()


      



  



  
    
      
      Link to this type
    
    opts()


      
       
       View Source
     


  


  

      

          @type opts() :: YaBTT.Deco.config()


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    query(map)


      
       
       View Source
     


  


  

      

          @spec query(YaBTT.Deco.t()) :: map()


      


Query the peers who hold the target torrent by YaBTT.Deco.t/0.

  



  
    
      
      Link to this function
    
    query(info_hash, opts)


      
       
       View Source
     


  


  

      

          @spec query(id(), opts()) :: map()


      


Query the peers who hold the target torrent.
We have implemented the [BitTorrent Tracker Protocol Extensions][protocol_extensions]. That means
that we can use :compact and :no_peer_id for option mode to control the return of peer.
You can see the specific meaning and practical examples of the options below.

  
  mode

  
  Mode


	:compact: return a binary string of peers in compact format.
In the mode, the peers with IPv4 list is replaced by a peers string with 6 bytes per peer.
For each peer, the first 4 bytes are the IP address and the last 2 bytes are the port number.
The length of the whole peers will be a multiple of 6 (6 × the number of peers in peers).
If the peers with Ipv6, the situation is similar, but the each peer is 18 bytes (The first
16 bytes are the IP address and the last 2 bytes are the port number).

	:no_peer_id: return a list of peers without peer id.
This option will be ignored if :compact mode is enabled.

	nil: return a list of peers with full information (ip, port and the peer id).



  
  parameters

  
  Parameters


	id: the id of the target torrent
	opts: the options to set the return format


  
  examples

  
  Examples


iex> YaBTT.Query.Peers.query("info_hash", %{mode: :compact})

iex> YaBTT.Query.Peers.query("info_hash", %{mode: :no_peer_id})

iex> YaBTT.Query.Peers.query("info_hash", %{})

  


        

      



  

  
    
    YaBTT.Query.State - YaBTT v0.1.5
    
    

    



  
  

    
YaBTT.Query.State 
    



      
This module is used to query the state from the YaBTT.Schema.Connection.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Types
  


    
      
        info_hash()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        query()

      


        Query the statistics of the tracker from the YaBTT.Schema.Connection.



    


    
      
        query(info_hashs)

      


        Query the state with info_hash/0 from the YaBTT.Schema.Connection.



    





      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    info_hash()


      
       
       View Source
     


  


  

      

          @type info_hash() :: binary()


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %{
  required(binary()) => %{
    required(info_hash()) => %{required(binary()) => non_neg_integer()} | %{}
  }
}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    query()


      
       
       View Source
     


  


  

      

          @spec query() :: map()


      


Query the statistics of the tracker from the YaBTT.Schema.Connection.
The following information will be queried:
	active - The number of active connections.
	seeders - The number of active connections that have completed downloading.
	leechers - The number of active connections that have not completed downloading.
	completed - The number of connections that have ever completed downloading.
	total - The total number of connections.
	torrents - The total number of torrents.
	peers - The total number of peers.

Then we will return a key-value map and the value will be a non-negative integer.

  
  examples

  
  Examples


iex> YaBTT.Query.State.query()

  



  
    
      
      Link to this function
    
    query(info_hashs)


      
       
       View Source
     


  


  

      

          @spec query([info_hash()]) :: t()


      


Query the state with info_hash/0 from the YaBTT.Schema.Connection.
Use one or more given info_hash/0 to query the following information
from the YaBTT.Schema.Connection:
	complete - The number of active peers that have completed downloading.
	incomplete - The number of active peers that have not completed downloading.
	downloaded - The number of peers that have ever completed downloading.

Then we will return a t/0 as required by the specification.

  
  references

  
  References


	Tracker Protocol Extension: Scrape
	Tracker 'scrape' Convention


  
  examples

  
  Examples


iex> YaBTT.Query.State.query(["info_hash_1", "info_hash_2"])

  


        

      



  

  
    
    YaBTT.Schema.Connection - YaBTT v0.1.5
    
    

    



  
  

    
YaBTT.Schema.Connection 
    



      
The schema for the connections table.
A torrent can have many peers, and a peer can be connected to many torrents.
This schema is used to store the primary keys as a foreign key from the
torrents and peers tables.
At the same time, this table is also responsible for maintaining the status
of the link. Including uploaded',downloaded', left and event.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Types
  


    
      
        changeset_t()

      


    


    
      
        connect()

      


    


    
      
        params()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        changeset(connection, params, arg)

      


        A changeset to validate if the status of the connection is valid. This
torrent_id and peer_id are used to connect with the torrents and
peers tables.



    





      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    changeset_t()


      
       
       View Source
     


  


  

      

          @type changeset_t() :: Ecto.Changeset.t(t())


      



  



  
    
      
      Link to this type
    
    connect()


      
       
       View Source
     


  


  

      

          @type connect() :: {term(), term()}


      



  



  
    
      
      Link to this type
    
    params()


      
       
       View Source
     


  


  

      

          @type params() :: map()


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %YaBTT.Schema.Connection{
  __meta__: term(),
  completed: term(),
  downloaded: term(),
  id: term(),
  left: term(),
  peer: term(),
  peer_id: term(),
  started: term(),
  torrent: term(),
  torrent_info_hash: term(),
  uploaded: term()
}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    changeset(connection, params, arg)


      
       
       View Source
     


  


  

      

          @spec changeset(changeset_t() | t(), params(), connect()) :: changeset_t()


      


A changeset to validate if the status of the connection is valid. This
torrent_id and peer_id are used to connect with the torrents and
peers tables.

  
  parameters

  
  Parameters


	connection: the changeset or YaBTT.Schema.Connection
	params: the request parameters
	connect: the torrent_id and peer_id to connect with the torrents and peers tables


  
  examples

  
  Examples


iex> alias YaBTT.Schema.Connection
iex> params = %{"uploaded" => "121", "downloaded" => "41421", "left" => "0", "event" => "started"}
iex> Connection.changeset(%Connection{}, params, {1, 1})

  


        

      



  

  
    
    YaBTT.Schema.Peer - YaBTT v0.1.5
    
    

    



  
  

    
YaBTT.Schema.Peer 
    



      
The schema for a peer.
A peer is a client that is connected to a torrent. It is identified by a
unique peer_id, which is a 20-byte string. The peer_id is generated by the
client and is not necessarily unique. The ip and port are used to connect
to the peer. The ip is optional, and if not provided, the ip of the
connection is used. The port is required.
A peer can be connected to many torrents, and a torrent can have many peers.
Fields
	peer_id - The peer_id of the peer.
	ip - The ip of the peer.
	port - The port of the peer.
	inserted_at - The time the peer was inserted.
	updated_at - The time the peer was last updated.

Associations
	torrents - The torrents the peer is connected to.


      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Types
  


    
      
        changeset_t()

      


    


    
      
        ip_addr()

      


    


    
      
        params()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        changeset(peer, params, ip)

      


        A peer can be created or updated with a changeset. The changeset requires
the peer_id and port to be present. The ip is optional, and if not provided,
the ip of the connection is used.



    





      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    changeset_t()


      
       
       View Source
     


  


  

      

          @type changeset_t() :: Ecto.Changeset.t(t())


      



  



  
    
      
      Link to this type
    
    ip_addr()


      
       
       View Source
     


  


  

      

          @type ip_addr() :: :inet.ip_address()


      



  



  
    
      
      Link to this type
    
    params()


      
       
       View Source
     


  


  

      

          @type params() :: map()


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %YaBTT.Schema.Peer{
  __meta__: term(),
  id: term(),
  inserted_at: term(),
  ip: term(),
  key: term(),
  peer_id: term(),
  port: term(),
  torrents: term(),
  updated_at: term()
}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    changeset(peer, params, ip)


      
       
       View Source
     


  


  

      

          @spec changeset(changeset_t() | t(), params(), ip_addr()) :: changeset_t()


      


A peer can be created or updated with a changeset. The changeset requires
the peer_id and port to be present. The ip is optional, and if not provided,
the ip of the connection is used.

  
  parameters

  
  Parameters


	peer - The peer to create a changeset for.
	conn - The connection to get the ip from.


  
  examples

  
  Examples


iex> alias YaBTT.Schema.Peer
iex> params = %{
...>   "peer_id" => "-TR14276775888084598",
...>   "key" => "ecsc1ggh0h",
...>   "port" => "6881"
...> }
iex> Peer.changeset(%Peer{}, params, {1, 2, 3, 4})

  


        

      



  

  
    
    YaBTT.Schema.Torrent - YaBTT v0.1.5
    
    

    



  
  

    
YaBTT.Schema.Torrent 
    



      
The schema for torrents.
Fields
	info_hash - The info hash of the torrent.
	peers - The peers that are currently seeding or leeching the torrent.

Associations
	peers - The peers that are currently seeding or leeching the torrent.

Indexes
	info_hash - The info hash of the torrent.


      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Types
  


    
      
        changeset_t()

      


    


    
      
        params()

      


    


    
      
        t()

      


    





  
    Functions
  


    
      
        changeset(torrent, params)

      


        A torrent can be created or updated with a changeset. The changeset requires
the info_hash to be present.



    





      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    changeset_t()


      
       
       View Source
     


  


  

      

          @type changeset_t() :: Ecto.Changeset.t(t())


      



  



  
    
      
      Link to this type
    
    params()


      
       
       View Source
     


  


  

      

          @type params() :: map()


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %YaBTT.Schema.Torrent{
  __meta__: term(),
  info_hash: term(),
  inserted_at: term(),
  peers: term(),
  updated_at: term()
}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    changeset(torrent, params)


      
       
       View Source
     


  


  

      

          @spec changeset(changeset_t() | t(), params()) :: changeset_t()


      


A torrent can be created or updated with a changeset. The changeset requires
the info_hash to be present.

  
  parameters

  
  Parameters


	torrent - The torrent to validate.
	params - The parameters to validate.


  
  examples

  
  Examples


iex> alias YaBTT.Schema.Torrent
iex> Torrent.changeset(%Torrent{}, %{
...>   "info_hash" => <<18, 52, 86, 120, 154, 188, 222, 241, 35, 69, 103, 137, 171, 205, 239, 18, 52, 86, 120, 154>>})
#Ecto.Changeset<action: nil, changes: %{info_hash: <<18, 52, 86, 120, 154, 188, 222, 241, 35, 69, 103, 137, 171, 205, 239, 18, 52, 86, 120, 154>>}, errors: [], data: #YaBTT.Schema.Torrent<>, valid?: true>

  


        

      



  

  
    
    YaBTT.CustomTypes.IPAddress - YaBTT v0.1.5
    
    

    



  
  

    
YaBTT.CustomTypes.IPAddress 
    



      
A custom type for IP addresses.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Types
  


    
      
        io_ip_addr()

      


    


    
      
        ip_addr()

      


    





  
    Functions
  


    
      
        cast(ip)

      


        Casts the given value to an IP address (ip_addr/0).



    


    
      
        dump(arg1)

      


        Dumps the IP address to the database.



    


    
      
        embed_as(_)

      


        Callback implementation for Ecto.Type.embed_as/1.



    


    
      
        equal?(term1, term2)

      


        Callback implementation for Ecto.Type.equal?/2.



    


    
      
        load(arg1)

      


        Loads the IP address from the database.



    


    
      
        type()

      


        Returns the underlying schema type for the custom type.



    





      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    io_ip_addr()


      
       
       View Source
     


  


  

      

          @type io_ip_addr() :: <<_::32>> | <<_::128>>


      



  



  
    
      
      Link to this type
    
    ip_addr()


      
       
       View Source
     


  


  

      

          @type ip_addr() :: :inet.ip_address()


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    cast(ip)


      
       
       View Source
     


  


  

      

          @spec cast(binary() | charlist()) :: :error | {:ok, ip_addr()}


          @spec cast(ip_addr()) :: {:ok, ip_addr()}


      


Casts the given value to an IP address (ip_addr/0).
There are two situations where this callback is called:
	When casting values by Ecto.Changeset
	When passing arguments to Ecto.Query

It will return :error if the given term cannot be cast.

  
  parameters

  
  Parameters


	ip - The IP address to cast. The Ip address could be a binary, a
charlist, or an ip_addr/0.


  
  examples

  
  Examples


iex> YaBTT.CustomTypes.IPAddress.cast('127.0.0.1')
{:ok, {127, 0, 0, 1}}

iex> YaBTT.CustomTypes.IPAddress.cast("::1")
{:ok, {0, 0, 0, 0, 0, 0, 0, 1}}

iex> YaBTT.CustomTypes.IPAddress.cast({127, 0, 0, 1})
{:ok, {127, 0, 0, 1}}

iex> YaBTT.CustomTypes.IPAddress.cast("abc")
:error

  



  
    
      
      Link to this function
    
    dump(arg1)


      
       
       View Source
     


  


  

      

          @spec dump(ip_addr()) :: :error | {:ok, io_ip_addr()}


      


Dumps the IP address to the database.
This callback is called when dumping values to the database.
It will return :error if the given term cannot be dumped.

  
  parameters

  
  Parameters


	ip - The IP address to dump to the database. It should be an ip_addr/0.


  
  examples

  
  Examples


iex> YaBTT.CustomTypes.IPAddress.dump({127, 0, 0, 1})
{:ok, <<127, 0, 0, 1>>}

iex> YaBTT.CustomTypes.IPAddress.dump({0, 0, 0, 0, 0, 0, 0, 1})
{:ok, <<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1>>}

iex> YaBTT.CustomTypes.IPAddress.dump({"a", "b", "c"})
:error

  



  
    
      
      Link to this function
    
    embed_as(_)


      
       
       View Source
     


  


  

Callback implementation for Ecto.Type.embed_as/1.

  



  
    
      
      Link to this function
    
    equal?(term1, term2)


      
       
       View Source
     


  


  

Callback implementation for Ecto.Type.equal?/2.

  



  
    
      
      Link to this function
    
    load(arg1)


      
       
       View Source
     


  


  

      

          @spec load(io_ip_addr()) :: :error | {:ok, ip_addr()}


      


Loads the IP address from the database.
This callback is called when loading values from the database.
It will return :error if the given term cannot be loaded.

  
  parameters

  
  Parameters


	ip - The IP address to load from the database. It is should be a
binary in the normal case.


  
  examples

  
  Examples


iex> YaBTT.CustomTypes.IPAddress.load(<<127, 0, 0, 1>>)
{:ok, {127, 0, 0, 1}}

iex> YaBTT.CustomTypes.IPAddress.load(<<0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1>>)
{:ok, {0, 0, 0, 0, 0, 0, 0, 1}}

iex> YaBTT.CustomTypes.IPAddress.load("abc")
:error

  



  
    
      
      Link to this function
    
    type()


      
       
       View Source
     


  


  

      

          @spec type() :: :binary


      


Returns the underlying schema type for the custom type.

  


        

      



  

  
    
    YaBTTWeb.Controllers.Announce - YaBTT v0.1.5
    
    

    



  
  

    
YaBTTWeb.Controllers.Announce 
    



      
The Announce controller for the YaBTT application.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Types
  


    
      
        resp_msg()

      


    





  
    Functions
  


    
      
        call(conn, opts)

      


        The main entry point for the plug. This function is called for every request.



    


    
      
        init(opts)

      


        Initializes the plug. This function is called once when the plug is compiled.



    


    
      
        put_resp_msg(conn, arg2)

      


        Bind the response message to the connection struct. All the message will be encoded as
bencoding with Bento.encode/2.



    





      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    resp_msg()


      
       
       View Source
     


  


  

      

          @type resp_msg() :: YaBTT.t(term()) | :error


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    call(conn, opts)


      
       
       View Source
     


  


  

      

          @spec call(Plug.Conn.t(), Plug.opts()) :: Plug.Conn.t()


      


The main entry point for the plug. This function is called for every request.
This function is responsible for:
	Receive a report from peer
	Update the track list
	Return peers who hold the target torrent
	Return other information


  
  parameters

  
  Parameters


	conn: The connection struct.
	opts: The options passed to the plug.


  
  return

  
  Return


Processed connection structure.

  



  
    
      
      Link to this function
    
    init(opts)


      
       
       View Source
     


  


  

      

          @spec init(Plug.opts()) :: Plug.opts()


      


Initializes the plug. This function is called once when the plug is compiled.
This function pass the passed options call/2.

  
  parameters

  
  Parameters


	opts: The options passed to the plug.


  
  return

  
  Return


The options passed to the plug.

  



  
    
      
      Link to this function
    
    put_resp_msg(conn, arg2)


      
       
       View Source
     


  


  

      

          @spec put_resp_msg(Plug.Conn.t(), resp_msg()) :: Plug.Conn.t()


      


Bind the response message to the connection struct. All the message will be encoded as
bencoding with Bento.encode/2.

  
  parameters

  
  Parameters


	conn: The connection struct.
	msg: The response message.


  
  example

  
  Example


iex> conn = %Plug.Conn{}
iex> msg = {:ok, %{"interval" => 1800, "peers" => []}}
iex> conn = YaBTTWeb.Controllers.Announce.put_resp_msg(conn, msg)
iex> conn.resp_body
"d8:intervali1800e5:peerslee"

iex> conn = %Plug.Conn{}
iex> msg = {:error, "Some error message"}
iex> conn = YaBTTWeb.Controllers.Announce.put_resp_msg(conn, msg)
iex> conn.resp_body
"d14:failure reason18:Some error messagee"

iex> conn = %Plug.Conn{}
iex> conn = YaBTTWeb.Controllers.Announce.put_resp_msg(conn, :error)
iex> conn.resp_body
"d14:failure reason22:unknown internal errore"

  


        

      



  

  
    
    YaBTTWeb.Controllers.Info - YaBTT v0.1.5
    
    

    



  
  

    
YaBTTWeb.Controllers.Info 
    



      
A controller (Plug.Builder) for the tracker statistics page.
This controller is responsible to show the current state of the tracker.
Noice
This controller requires the authentication. See: YaBTTWeb.Auth.

We query the state of the tracker by calling YaBTT.Query.State.query/0.
Then we render the result to a HTML page using EEx. Finally, we send the
response to the client (Browser).
You can check YaBTT.Query.State.query/0 for more information about what
information we statistics.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Functions
  


    
      
        call(conn, opts)

      


        Callback implementation for Plug.call/2.



    


    
      
        info(conn, opts)

      


        A Plug to handles the request.



    


    
      
        init(opts)

      


        Callback implementation for Plug.init/1.



    





      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    call(conn, opts)


      
       
       View Source
     


  


  

Callback implementation for Plug.call/2.

  



  
    
      
      Link to this function
    
    info(conn, opts)


      
       
       View Source
     


  


  

      

          @spec info(Plug.Conn.t(), Plug.opts()) :: Plug.Conn.t()


      


A Plug to handles the request.
Query, and render the result to a HTML page.
Finally, send the response to the client.

  



  
    
      
      Link to this function
    
    init(opts)


      
       
       View Source
     


  


  

Callback implementation for Plug.init/1.

  


        

      



  

  
    
    YaBTTWeb.Controllers.Scrape - YaBTT v0.1.5
    
    

    



  
  

    
YaBTTWeb.Controllers.Scrape 
    



      
A Plug to handle route /scrape.
The original BitTorrent Protocol Specification defines
one exchange between a client and a tracker referred to as an announce. In order to build responsive user
interfaces, clients desired an additional way to query metadata about swarms in bulk. The exchange that
fetches this metadata for the clients is referred to as a scrape.
It should be noted that scrape exchanges have no effect on a peer's participation in a swarm.
Learn more about Tracker Protocol Extension: Scrape.
Examples
For reference, we have prepared a more detailed actual cases
of call routing /scrape.
Scrape Request
The query string should be like:
info_hash=Nf%22v%BA%CA%0F%DBk%D6%0Bv%17%8C%D1%19%D1%05%00%13&info_hash=%124Vx%9A%BC%DE%F1%23Eg%89%AB%CD%EF%124Vx%9A
Notice that the info_hash need to be encoded to RFC1738.
Scrape Response
The response to a successful request is a bencoded dictionary containing one key-value pair: the key files
with the value being a dictionary of the 20-byte string representation of an infohash paired with a dictionary
of swarm metadata. The fields found in the swarm metadata dictionary are as follows:
	complete - The number of active peers that have completed downloading.
	incomplete - The number of active peers that have not completed downloading.
	downloaded - The number of peers that have ever completed downloading.


      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Functions
  


    
      
        call(conn, opts)

      


        The main entry point for the plug.



    


    
      
        init(opts)

      


        Initializes the plug.



    





      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    call(conn, opts)


      
       
       View Source
     


  


  

      

          @spec call(Plug.Conn.t(), Plug.opts()) :: Plug.Conn.t()


      


The main entry point for the plug.

  



  
    
      
      Link to this function
    
    init(opts)


      
       
       View Source
     


  


  

      

          @spec init(Plug.opts()) :: Plug.opts()


      


Initializes the plug.

  


        

      



  

  
    
    YaBTTWeb.Router - YaBTT v0.1.5
    
    

    



  
  

    
YaBTTWeb.Router 
    



      
Plug router for the Tracker application.
This module is responsible for routing incoming requests to the appropriate
controller action.
The router is responsible for:
	Logging all requests
	Parsing the request body
	Routing the request to the appropriate controller action
	Returning a response to the client

The router is not responsible for:
	Performing any business logic

The router is a Plug, which is a module that conforms to the Plug specification.
A Plug is a module that implements a call/2 function that takes a Plug.Conn
struct and returns a Plug.Conn struct.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Functions
  


    
      
        call(conn, opts)

      


        Callback implementation for Plug.call/2.



    


    
      
        init(opts)

      


        Callback implementation for Plug.init/1.



    





      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    call(conn, opts)


      
       
       View Source
     


  


  

Callback implementation for Plug.call/2.

  



  
    
      
      Link to this function
    
    init(opts)


      
       
       View Source
     


  


  

Callback 